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[A2] GDAWIEC, K. Procedural generation of aesthetic patterns from dynamics and iteration
processes. International Journal of Applied Mathematics and Computer Science. (in press)
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MNiSW: 15 pts.
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MNiSW: 15 pts.
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Intelligent Systems and Computing. Springer International Publishing, 2015, pp. 499–506.
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MNiSW: 15 pts.

[A8] GDAWIEC, K. Pseudoinversion fractals. In Computer Vision and Graphics, L. J.
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in Computer Science. Springer International Publishing, Cham, 2016, pp. 29–36. DOI:
10.1007/978-3-319-46418-3 3
MNiSW: 15 pts.

[A9] GDAWIEC, K. Inversion fractals and iteration processes in the generation of aesthetic
patterns. Computer Graphics Forum 36, 1 (2017), 35–45. DOI: 10.1111/cgf.12783
IF: 1.611, MNiSW: 35 pts.

[A10] GDAWIEC, K. Switching processes in polynomiography. Nonlinear Dynamics 87, 4 (2017),
2235–2249. DOI:10.1007/s11071-016-3186-2
IF: 3.464, MNiSW: 45 pts.
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307 (2017), 17–30. DOI: 10.1016/j.amc.2017.02.038
IF: 1.738, MNiSW: 40 pts.
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patterns with the use of dynamical systems. In Advances in Visual Computing, G. Bebis,
R. Boyle, B. Parvin, D. Koracin, S. Wang, K. Kyungnam, B. Benes, K. Moreland, C. Borst,
S. DiVerdi, C. Yi-Jen, and J. Ming, Eds., vol. 6939 of Lecture Notes in Computer Science.
Springer, Berlin Heidelberg, 2011, pp. 691–700. DOI: 10.1007/978-3-642-24031-7 69
MNiSW: 5 pts.

[A13] GDAWIEC, K., KOTARSKI, W., AND LISOWSKA, A. Polynomiography based on the
non-standard Newton-like root finding methods. Abstract and Applied Analysis 2015
(2015), Article ID 797594, 19 pages. DOI: 10.1155/2015/797594
MNiSW: 40 pts.

[A14] GDAWIEC, K., KOTARSKI, W., AND LISOWSKA, A. Biomorphs via modified iterations.
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Journal of Nonlinear Science and Applications 9, 5 (2016), 2305–2315.
IF: 1.34, MNiSW: 35 pts.

[A15] GDAWIEC, K., KOTARSKI, W., AND LISOWSKA, A. Polynomiography for square systems
of equations with Mann and Ishikawa iterations. In WSCG 2016 Short Papers Proceedings
(Pilsen, Czech Republic, 2016), pp. 1–5.
MNiSW: 5 pts.

Additional

[B1] GDAWIEC, K., KOTARSKI, W., AND LISOWSKA, A. Automatyczne generowanie estety-
cznych wzorów za pomoca̧ transformacji Gumowskiego-Miry. In Systemy wspomagania
decyzji, A. Wakulicz-Deja, Ed. Instytut Informatyki Uniwersytetu Śla̧skiego, Katowice,
2011, pp. 219–226.
MNiSW: 4 pts.

[B2] GDAWIEC, K., KOTARSKI, W., AND LISOWSKA, A. Wielomianografia wyższych rzȩdów
z iteracjami Manna i Ishikawy. In Systemy wspomagania decyzji, A. Wakulicz-Deja, Ed.
Instytut Informatyki Uniwersytetu Śla̧skiego, Katowice, 2013, pp. 171–181.
MNiSW: 5 pts.

[B3] GDAWIEC, K., KOTARSKI, W., AND LISOWSKA, A. Polynomiography with
non-standard iterations. In WSCG 2014 Poster Papers Proceedings (Pilsen, Czech Republic,
2014), pp. 21–26.
MNiSW: 5 pts.

[B4] GDAWIEC, K., KOTARSKI, W., AND LISOWSKA, A. Wielomianografia z niestandardowa̧
rodzina̧ iteracji Eulera-Schrödera. In Systemy inteligencji obliczeniowej, U. Boryczka,
M. Boryczka, and M. Przybyła-Kasperek, Eds. Instytut Informatyki Uniwersytetu
Śla̧skiego, Katowice, 2014, pp. 75–85.
MNiSW: 5 pts.

[B5] KOTARSKI, W., GDAWIEC, K., AND LISOWSKA, A. On Gumowski-Mira aesthetic super-
fractal forms. In Proceedings of The 2010 IRAST International Congress on Computer Appli-
cations and Computational Science (Singapore, 2010), S. Chellappan, A. C. Cheng, M. Min,
V. N. Quang, P. Ramalingam, and H.-C. Yang, Eds., International Research Alliance for
Science and Technology, pp. 562–565.
MNiSW: 7 pts.

[B6] KOTARSKI, W., GDAWIEC, K., AND LISOWSKA, A. Metody generowania estetycznych
wzorów. In Systemy wspomagania decyzji, A. Wakulicz-Deja, Ed. Instytut Informatyki
Uniwersytetu Śla̧skiego, Katowice, 2012, pp. 331–339.
MNiSW: 4 pts.

[B7] KOTARSKI, W., GDAWIEC, K., AND LISOWSKA, A. Polynomiography via Ishikawa and
Mann iterations. In Advances in Visual Computing, G. Bebis, R. Boyle, B. Parvin, D. Ko-
racin, C. Fowlkes, S. Wang, M.-H. Choi, S. Mantler, J. Schulze, D. Acevedo, K. Mueller,
and M. Papka, Eds., vol. 7431 of Lecture Notes in Computer Science. Springer, Berlin Hei-
delberg, 2012, pp. 305–313. DOI: 10.1007/978-3-642-33179-4 30
MNiSW: 10 pts.

4.3. Review of scientific achievement

One of the most elusive goals in computer aided design is artistic design and pat-
tern generation. Pattern generation involves diverse aspects: analysis, creativity and
development [39]. A designer has to deal with all of these aspects in order to obtain an
interesting pattern, which later could be used in jewellery design, carpet design, as a
texture etc. Usually the most work during the design stage is carried out by a designer
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manually, especially in the cases in which the designed pattern should contain some
unique, unrepeatable artistic features. Therefore, it is highly useful to develop methods
(e.g. automatic, semi-automatic) that will assist pattern generation, and will make the
whole process easier.

Aesthetics in the world of art and photography is connected with the principles
of the nature and the perception of beauty. Assessing the beauty and other aesthetic
features of patterns, paintings, photographs is a highly subjective task, so there is no
standard method of measuring aesthetic values. Development of such methods is a
challenge in the discipline named computational aesthetics. However, in most of the
works about pattern generation the aesthetic is assessed by the subjective feeling of the
authors and not by the aesthetic measures developed in computational aesthetics.

In the literature we can find many pattern generation methods that found various
applications: jewellery design [27, 36, 38], textile [6, 10, 20] or package decoration [40]
patterns design, in games (textures, assets) [34], in architecture [11, 41] or purely artistic
applications [21, 22]. In all the methods for pattern generation various approaches
are used. The most basic approach is the use of various mathematical formulas and
notions. Among these methods the mostly used methods are fractals, e.g., iterated
function systems (IFS) [5, 27, 38], complex fractals [12, 35, 37], and methods that use
dynamical systems, e.g., orbits of dynamical systems [23, 25] or its dynamics [3, 19,
26]. Besides the methods that use various mathematical equations we can find in the
literature many other approaches to aesthetic pattern generation. The most popular
approach is the use of different types of grammars. Shape grammars are the most
popular type of grammars used among these methods. For instance, they were used to
generate ethnic Zhuang embroidery designs [10] and Islamic geometric patterns [31].
Other types of grammars used to generate patterns are collage grammars [15] and
L-systems [2]. Further popular approaches used in the field include the use of: graph
methods [41], cellular automata [8], neural networks [33] and Petri nets [16]. Moreover,
we can also find programmable methods [18], methods that are based on examples [29]
and in which a user-driven planning strategy is used [1].

In my research work on aesthetic pattern generation methods I have chosen the
approach based on the mathematical formulas. Because the fractal methods and the
ones based on dynamical systems give many possibilities of obtaining patterns with
shapes, that are non-trivial and rich in details my attention has focused on this type
of methods. In the research I developed various aesthetic pattern generation methods,
that can be divided into the following groups:
o methods that generate patterns with the help of complex polynomial root finding

algorithms and methods for solving systems of non-linear equations,
o biomorphs,
o inversion and pseudoinversion fractals,
o methods that generate patterns with the use of orbits of discrete dynamical systems,
o methods that generate patterns with the use of dynamics of discrete dynamical

systems.
In the next points the individual groups of the developed methods will be reviewed.

4.3.1. Patterns generated with the help of complex polynomial root finding
algorithms and methods for solving systems of non-linear equations

Methods, which use complex polynomial root finding algorithms are, besides the
Julia and the Mandelbrot sets, one of the most used fractal methods for generating
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aesthetic patterns. Around 2000 these methods obtained its own name – polynomiog-
raphy. One image generated with the help of these methods is called polynomiograph.
B. Kalantari was the creator of these notions, and he defined polynomiography as: the
art and science of visualisation in approximation of the zeros of complex polynomials,
via fractal and non-fractal images created using the mathematical convergence prop-
erties of iteration functions [12]. In 2005 Kalantari obtained an U.S. patent on the use
of polynomiography in the generation of aesthetic patterns [13].

The main components in polynomiography, that have impact on the generated pat-
tern’s shape, are the polynomial and the root finding method. Most commonly used
algorithm for root finding of complex polynomial is the classical Newton’s method. In
the literature we can find many other methods, e.g., the Halley method, the Whittaker
method, the Traub-Ostrowski method, and each of these methods can be successfully
used in the aesthetic pattern generation. Besides the polynomial and the root finding
method in the basic pattern generation algorithm we need the area in which we gen-
erate the pattern, the maximum number of iterations, the accuracy of computations
and colour map that will be used to colour the pattern. Algorithm 1 presents the basic
version of polynomiography pattern generation method.

Algorithm 1: Polynomiograph generation
Input: p ∈ C[Z] – polynomial of degree at least 2, R : C→ C – the root finding

method, A ⊂ C – area, M – the maximum number of iterations, ε –
accuray, colours[0..C] – colour map.

Output: polynomiograph for the area A

1 for z0 ∈ A do
2 n = 0
3 while n ≤ M do
4 zn+1 = R(zn)
5 if |zn+1 − zn| < ε then
6 break

7 n = n + 1

8 determine the colour for z0 using the colour map colours

Paper [B6] presents a review of some aesthetic pattern generation methods among
which one can find polynomiography. Besides the history of polynomiogrphy it also
presents applications of polynomiography in the visualization of perturbation matri-
ces, i.e., matrices in which in each row and column we have only one element equal to
1 and the remaining elements are equal to 0. The article was an introduction to further
work on polynomiography and other methods of aesthetic pattern generation.

In the basic algorithm for polynomiograph’s generation (Algorithm 1) for the itera-
tion of a point an iteration of the following form:

zn+1 = R(zn). (1)

is used. This type of iteration is often used in many numerical algorithms and in other
fields, e.g., in the fixed point theory (e.g., Banach fixed point theorem). In the fixed
point theory iteration (1) is called the Picard iteration. Besides this type of iteration
in fixed point theory the researchers study other types of iteration, which are used in
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the appoximation of the fixed points of different kinds of functions, not necessarily
contractive ones. Examples of such iterations are:
o Mann iteration [24]

zn+1 = (1− αn)zn + αnT(zn), (2)

where αn ∈ (0, 1] and T is the function for which we search for the fixed points,
o Ishikawa iteration [9]

zn+1 = (1− αn)zn + αnT(vn),
vn = (1− βn)zn + βnT(zn),

(3)

where αn ∈ (0, 1], βn ∈ [0, 1] and T is the function for which we search for the fixed
points.
Papers [B2, B7] present the use, in the polynomiography generation algorithm, in-

stead of the Picard iteration the Mann and the Ishikawa iterations, where in these it-
erations the role of T plays the root finding method R. As the root finding method
in [B7] the Newton method (the first order method) and in [B2] the elements of the
so-called basic family (the higher order methods) were used. In case of both papers
in the examples the polynomials given in explicit form and obtained from the permu-
tation matrices were used. The examples showed that the change of the Mann and
Ishikawa iteration parameters’ values has a significant effect on the shape of the ob-
tained pattern and that with the use of other types of iterations we are able to obtain
patterns, that we had not been able to obtain with the help of the Picard iteration.
Moreover, in [B2] the impact of other parameters that are used in the polynomiograph
generation algorithm on the pattern’s shape was studied. The studies covered the
change of the basic family elements and the maximum number of iterations. In case of
these parameters the change of the pattern was noticeable, but not as significant as in
the case of the use of the Mann and Ishikawa iteration.

In line 5 of Algorithm 1 we check if the modulus of the difference between two con-
secutive elements of the generated sequence is less than the given accuracy. This is the
so-called convergence test of the algorithm. In Algorithm 1 we use the standard test,
which is used in many iterative algorithms. In [A4] it was noticed that the standard
convergence test is equivalent with the computation of the distance between two com-
plex plane elements with the use of the modulus metric. Basing on this observation,
firstly, the use of other standard metrics and the metrics generated by various theorems
on metric spaces was proposed. Next, some modifications of the convergence tests
were proposed. The first modification was the omission of some of the assumptions
needed for the function generated by the theorems to be a metric. The second modifi-
cation was the addition of weights into the functions that are metrics. The next group
of convergence tests was created by the use of various metrics, weights and joining
the conditions with logical conjunctions. The last group of the proposed convergence
tests were the tests based on the idea taken from the escape time algorithm used for
the generation of Julia and Mandelbrot sets. The examples showed that with the help
of a simple alternation of the metric in the standard convergence test the shape of the
generated pattern changes in a small way. More interesting results, from the point of
generating patterns, were obtained using the other proposed convergence tests.

Basing on the idea introduced in [B2, B7] in articles [A13] [B3, B4] the use of further
iterations from fixed point theory was proposed. In [B3, B4] the authors used seven dif-
ferent iterations (Mann, Ishikawa, Noor, Khan, SP, Suantai, Karakaya) and in [A13] ten
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iterations – the same seven as in [B3, B4] and the S, CR and Picard-S iterations. When
we look at the Mann (2) and the Ishikawa (3) iterations we can notice that for particular
values of the αn and βn parameters these iterations can reduce to other iterations, e.g.,
for αn = 1 and βn = 0 the Ishikawa iteration reduces to the Picard iteration, and for
βn = 0 to the Mann iteration. In each of the papers [A13] [B3, B4] the authors studied
the dependencies between the iterations. Moreover, in [A13] the use in the iterations of
complex parameters instead of the real ones was proposed. In the examples present-
ing the capabilities of using the different iterations the following root finding methods
and polynomials were used: the Newton method for z3 − 1 in [B3], the elements of
the Euler-Schröder family for z4 + 4 and z3 − 3z + 3 in [B4] and the Newton method
for z7 + z2 − 1 and the E3 method (element of the Euler-Schröder family) for z4 + 4
in [A13]. In case of the [A13] paper the authors also presented examples showing the
impact of the complex parameters and different convergence tests (from [A4]) on the
shape of the obtained patterns. In [A13] [B3] the impact of changing the colour map on
the graphics feeling of the generated patterns was also studied. For this purpose the
same pattern was generated using various colour maps. The patterns were later given
to the visual analysis.

Polynomiography is primarily used as a method of visualization of the root finding
process of complex polynomials. For this purpose one can use standard rendering
methods: basins of attraction or method based on the iteration number (Algorithm 1).
In [A5] two polynomiograph rendering algorithms were proposed. Their purpose was
the generation of artistic patterns and not the visualization of the root finding process.
Both algorithms are based on the ideas taken from the standard methods of rendering
of Julia and Mandelbrot sets. Similarly to the case of the Julia and the Mandelbrot
sets when we iterate the root finding method R we use a constant c ∈ C. In the first
proposed algorithm, for each point z0 ∈ A the constant c is taken as f (z0), where
f : C→ C is some function. Next, the standard iteration process which uses the Picard
iteration is replaced by the following process:

zn+1 = R(zn)− c. (4)

After performing the iteration the constant c is transformed with the use of additional
function g : C → C. The idea of this algorithm reminds the idea of rendering of the
Mandelbrot set. In the second proposed algorithm the constant c is an input param-
eter of the algorithm, similarly to the case of generating Julia sets. Next, the iteration
process is replaced by the following process:

zn+1 = R(zn) + c. (5)

Similarly to the first algorithm after performing the iteration the constant c is trans-
formed by an additional function f : C→ C. In [A5] one can find examples presenting
different patterns generated with the use of various constants c, functions f and g,
and various convergence tests. The presented examples showed a big potential of the
proposed rendering algorithms in the generation of intriguing and aesthetic patterns.

In Algorithm 1, for each z0 ∈ A we can look at the sequence z1, z2, . . . as on an
orbit of discrete dynamical system. Using this observation in [A7] a modification of
the iterative process with the orbit’s perturbation was proposed. The perturbation of
the orbit was made by a perturbation function ρ : C×N→ C in the following way:

zn+1 = R(ρ(zn, n + 1)). (6)
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Thus, the point generated in the previous iteration is subject to perturbation. Moreover,
the convergence test was modified, so it also includes the perturbation function:

|zn+1 − ρ(zn, n + 1)| < ε. (7)

The iteration process and the convergence test are more general than the ones from
Algorithm 1, because for ρ(z, n) = z we obtain the standard iteration process and the
convergence test. In the same article another modification was proposed. The iteration
process was replaced by a combination of the standard iteration and the iteration with
the perturbation. This process is defined in the following way:

zn+1 = αR(zn) + (1− α)R(ρ(zn, n + 1)), (8)

where α ∈ C. The presented examples of patterns generated with the perturbed it-
eration process and the combination of iteration processes showed that using these
methods we are able to obtain many interesting patterns, which we had not been able
to generate using the standard methods known in polynomiography.

The next idea how to modify the iteration process that occur in polynomiography
was the use of switching processes. The idea was proposed in [A10], where four group
of switching processes were introduced: (1) switching of the root finding methods,
(2) switching of the iterations, (3) switching of the polynomials, (4) switching of the
convergence tests. In each of the groups three processes were proposed: (1) modulo,
(2) using the |z|, (3) using the |p(z)|, where p is a polynomial. In case of switching of
the iterations and the polynomials we cannot use any iteration and polynomial. For
iterations, we select such iterations that do not reduce to each other. If we had let the
use of iterations that reduce to each other, then the following situation could happen:
we do not have a switching process, but a single iteration process. For polynomials,
firstly we select a set of roots S of the first polynomial, then from S we select subset
of the roots for the second polynomial. Such choice of the roots is due the fact that if
the polynomials could have arbitrary roots, especially disjointed, then in the switch-
ing process of the polynomials the root finding method might not converge to any of
the roots. In [A10] examples presenting the use of each of the proposed switching
processes were presented. Those examples showed artistic potential of the switching
processes.

When creating patterns often we use combination of different techniques to obtain
new patterns. Pattern generation methods presented among other things in [A7, A13]
used only one method of root finding, iteration or polynomial, so if we want to ob-
tain patterns from their combination, then we need to use some graphics software
like GIMP or Adobe Photoshop. To generate combination of patterns we must in-
troduce new methods. We can acknowledge the switching processes from [A10] as
a first attempt to create such methods. In [A1] three different methods of combining
the methods from polynomiography were introduced. In the first method, a new it-
eration process was introduced that is based on the use of the affine and the s-convex
combinations of root finding methods. In fixed point theory besides iterations, which
search for fixed points of only one function we can find iterations that are used for an
approximation of common fixed points of several functions. The Das-Debata iteration
[4] is an example of such iterations, and it has the following form:

zn+1 = (1− αn)zn + αnT2(vn),
vn = (1− βn)zn + βnT1(zn),

(9)
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where αn ∈ (0, 1], βn ∈ [0, 1], and T1, T2 are the functions for which we search for the
common fixed points. The second proposed method in [A1] was the use instead of
iterations for a single root finding method the iterations that search for common fixed
points. The last proposed method was the so-called multistep polynomiography. This
method consists of the selected number of steps. In each step we give: the polynomial,
the iteration, the maximum number of iterations, the convergence test and the so-called
area transformation function. In each step of the multistep polynomiography we make
an iteration process as in the standard polynomiography (lines 2–7 in Algorithm 1) and
at the end of the step we transform the difference between the last generated point and
the starting point using the area transformation function. The transformed point is a
starting point for the next step. In [A1] the author gives also some remarks on how to
implement the proposed methods using the OpenGL Shading Language (GLSL). The
presented examples showed that the use of combination of the root finding methods
and the iterations gives new capabilities in the generation of aesthetic patterns. In par-
ticular, the multistep polynomiography gives many capabilities in obtaining patterns
that are rich in different details.

In [14] Kalantari introduced methods of finding the maximum of |p(z)| in D = {z ∈
C : |z| ≤ 1}. The first proposed method was based on the finding of fixed points of
properly defined function. In the second method, Kalantari studied a method of solv-
ing an equation given by a pseudo-polynomial given by the input polynomial p. For
solving the equation he used a pseudo-Newton method for sequence Gn of functions.
Moreover, Kalantari introduced polynomiographs presenting the behaviour of both
methods. In [A11] it was proved, that Gn is C∞ class and the form of the k-th deriva-
tive of this functions. These two facts allowed to extend the idea of the pseudo-Newton
method on other root finding methods, giving in this way many new methods, e.g., the
pseudo-Halley method, the pseudo-basic family. Moreover, similarly like in [A13] the
authors proposed the use of different iterations from fixed point theory. In comparison
to [A13] the list of iterations was expanded with the iterations that appeared in the re-
cent two years. The dependencies between these iterations were also studied. Finally,
the list consists of 17 iterations. In the paper different examples of polynomiographs
were presented. The examples included: the use of various iteration methods in the
pseudo-Newton method, the change of the parameter in the Mann iteration, the use of
various pseudo-methods and examples of purely artistic value.

Polynomiography, except the visualization of the root finding process, can be also
used in visualization of other processes. In [A15] the authors proposed the use of
the polynomiography techniques in the visualization of finding the solution of a sys-
tem of non-linear equations – the focus was on the system of two equations with two
variables. To solve the system the vector version of the Newton method was used.
Moreover, the use of the Mann and Ishikawa iterations instead of the Picard one was
proposed. The presented examples of the basins of attraction and polynomiographs
coloured based on the iteration count showed very intriguing patterns that could be
used, for instance, as patterns on wallpapers.

4.3.2. Biomorphs

In 1986 Pickover [28] introduced biomorphs (biological morphologies). He discov-
ered them accidentally while writing a program for drawing approximation of the Julia
sets. In his program he made a mistake which caused that the generated images were
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completely different from the expected Julia sets. The obtained shapes remained single
cellular organisms with internal structures – organelle.

In the generation of a biomorph for each point z0 from the considered area of the
complex plane we use like in the case of Julia sets a similar iterative process:

zn+1 = f (zn) + c, (10)

where f : C → C is the function which defines the biomorph and c ∈ C. Function f
can be any function, e.g., Pickover in his examples used: f (z) = z3, f (z) = z2 + sin z,
f (z) = 1/z5. Constant c plays a similar role like in the case of the Julia sets.

Two modifications of the biomorphs’ generation algorithm were proposed in [A14].
Because the iteration process (10) has the form of the Picard iteration, where T(z) =
f (z) + c, so the first modification replaces the Picard iteration with the Mann and
Ishikawa iterations. The second modification is based on the use of two constants
c1, c2 ∈ C\{0}. These two constants are used to define a recurrent sequence:

d0 = c1,
d2n−1 = 1

c2n−1
1
− d2n−2, n ≥ 1,

d2n = 1
c2n

2
− d2n−1, n ≥ 1,

(11)

which is then used in the original biomorphs’ generation algorithm instead of the con-
stants c. In the article several different examples were presented: the use of various
constants c1, c2, the change of the parameters in the Mann and Ishikawa iterations and
the use of both the constants c1, c2 and the Mann and Ishikawa iterations. Each of
the examples showed that with the help of the proposed modifications one can obtain
patterns with shapes different than those obtained with the original Pickover’s algo-
rithm. Moreover, the examples with the Mann and Ishikawa iterations showed that the
shape of the biomorph changes in a continuous way with the change of values of the
parameters used in these iterations. Using this observation one can create animation
of changing organisms.

4.3.3. Inversion and pseudoinversion fractals
Circle inversion was introduced in antiquity by Apollonius of Perga. Since then it

found many applications in geometry. In circle inversion we have a circle C with the
centre (xo, yo) and the radius R, which defines the following transformation:

IC(p) = (xo, yo) +
R2

(xp − xo)2 + (yp − yo)2 (xp − xo, yp − yo), (12)

where p = (xp, yp). The circle centre is called the centre of inversion.
In 2000 Frame and Cogevina in [7] used circle inversion to define new fractals – the

so-called circle inversion fractals. The circle inversion fractal is given by a finite set
of circles which creates transformations similarly like in the case of fractals given by
the iterated function system. In their work Frame and Cogevina also introduced two
algorithms for generating the circle inversion fractals. The algorithms are analogous to
the deterministic and the random method used to generate the IFS fractals.

In [A6] it was observed that the radius R in the circle inversion is the distance from
the centre of the circle to the intersection point of the boundary of the circle and a
ray from the centre and passing through the point for which we calculate the inverse
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transformation. Using this observation the inversion transformation was extended to
a star-shaped set, i.e., set having the following property: inside this set one can find
point z such that for each point p of this set the segment between z and p lies entirely
within this set. In the proposed extension, for a star-shaped set we fix one point which
satisfies the property of the star-shaped set and we take it as the centre of inversion.
Then, the star-shaped set inversion transformation takes the following form:

IS(p) = (xo, yo) +
[d(o, b)]2

(xp − xo)2 + (yp − yo)2 (xp − xo, yp − yo), (13)

where d – the Euclidean metric, o = (xo, yo) – the centre of inversion, p = (xp, yp) – the
point for which we calculate the inversion, b – the intersection point of the boundary
of a star-shaped set S and a ray from o and passing through p. Of course, circle is a
special case of a star-shaped set in which each interior point satisfies the property of the
star-shaped set. Thus, for the circle as the centre of inversion we can take any interior
point and not only its centre as in the case of circle inversion. Using the star-shaped set
inversion instead of the circle inversion the possibilities of obtaining fractals patterns
generated with the random algorithm for circle inversion given in [7] were expanded.
In [A6] the author also presented various examples of fractal patterns obtained with the
help of the star-shaped set inversion. The first example presented the circle inversion
with changing centres of inversion. This example showed that we are able to deform
the circle inversion fractals in an easy way. In the next example the impact of the
change of the shape of the sets defining the inversion transformations on the shape
of the resulting fractal was presented. The last example presented various fractals
obtained with the help of the star-shaped set inversion. In all the examples to colour
the patterns the same algorithm was used. For each transformation we fix its colour
and the point is coloured with the colour of the transformation that was used to obtain
this point.

The convergence of the random algorithm used in the generation of the star-shaped
set inversion fractals is guaranteed – similarly to the case of IFS fractals – by the Banach
fixed point theorem in which we use the Picard iteration. Because in fixed point theory
we have many different iterations that are used for finding fixed points, so in [A9]
instead of the Picard iteration the use of various iterations was proposed. Moreover,
two modifications of these iterations were proposed. In the iterations the parameters
belong to [0, 1] or (0, 1]. Thus, in the first modification the use of parameters outside
of these intervals was proposed. The second modification relied on the replacement of
the real parameters by the q-system numbers, i.e., numbers that are a generalization
of the complex numbers and which were introduced by Levin in [17]. Next, it was
shown that in fixed point theory there exist iterations that for inversion do reduce to
other iterations irrespective of the parameters used. This is a consequence of the fact
that inversion is an involution, i.e., IS(IS(p)) = p for each p. An example of this type
of iteration is the Schu iteration [32]

pn+1 = (1− αn)pn + αnT(n+1)(pn), (14)

which for involution reduces to the Mann iteration. Except the use of various iterations
from fixed point theory in [A9] the use of two switching processes was proposed. In
the first process we switch the iterations and in the second the q-systems. To colour
the fractals other method than the one from [A6] was proposed. In the proposed
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method we use a colour transformation, the histogram with the information on how
many times each pixel was hit and a logarithmic scaling with gamma correction. The
presented examples showed that the proposed extensions enrich geometry of the ob-
tained fractals in new, more intriguing details, and the colouring algorithm enrich the
aesthetic value. Moreover, in the article it was shown that the use of different iterations
in the classical IFS fractals given by the affine mappings does not enrich their geometry,
as in the case of inversion fractals, but the fractals become less interesting.

The fraction in the equation of the star-shaped set inversion (13) can be written in
the following form:

[d(o, b)]2

(xp − xo)2 + (yp − yo)2 =
[d(o, b)]2

[d(o, p)]2
=

[
d(o, b)
d(o, p)

]2

. (15)

In [30] Ramı́rez et al. studied the properties of the inversion transformation after the
change of the Euclidean metric in (15) with the metrics from the family:

dq(a, b) = (|xa − xb|q + |ya − yb|q)1/q, (16)

where a = (xa, ya), b = (xb, yb) and q ∈ [1, ∞).
Using the idea of the change of the Euclidean metric with the metrics from the

dq family in [A8] it was shown that with the fixed: S – star-shaped set, o – centre of
inversion, p – point and b – intersection point, for each q1, q2 ∈ [1, ∞) the following
equality:

dq1(o, b)
dq1(o, p)

=
dq2(o, b)
dq2(o, p)

. (17)

is true. From this fact it follows that with the fixed parameters of the inversion transfor-
mation and the change of the metric the value of the transformation does not change.
Thus, the change of only the metric does not change the shape of the inversion fractal.
Because the family dq is a monotonic one with respect to q, so in [A8] it was proposed
to use two metrics instead of one. In this way the value of the fraction is smaller or
greater, and this changes the value of the inversion transformation. This modification
of the inversion transformation causes that the transformation lose some properties
and it is no longer inversion. Because of this the modified transformation was called
the pseudoinversion transformation, and the fractals generated with it the pseudoin-
version fractals. Of course, each of the pseudoinversion transformations that define
the fractal can be given by different pair of metrics. In [A8] the use of a switching
process of the metrics was also proposed. The presented examples showed that us-
ing the pseudoinversion we are able to obtain fractals with different shapes than the
ones obtained with the inversion transformations given by the same star-shaped sets.
Moreover, the examples showed that the use of different pairs of metrics for different
pseudoinversion transformations locally changes the shape of the resulting fractal.

4.3.4. Patterns generated with the help of the orbits of discrete dynamical systems
In mathematical modelling many models use dynamical systems whether in a dis-

crete or continuous version. Except modelling of various phenomena dynamical sys-
tem can be used to generate aesthetic patterns. Since orbits of discrete dynamical
systems are able to create very interesting patterns, so one of the ways to generate
aesthetic patterns is the use of such orbits. An example of a transformation that gen-
erates a discrete dynamical system with an interesting orbits is the Gumowski-Mira
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transformation. It was used in a direct way among other things for generating textile
patterns [25].

The use of Gumowski-Mira transformation in a way similar to the superfractal algo-
rithm introduced by M. Barnsley was proposed in [B5]. The input for this algorithm are
two Gumowski-Mira transformations (with different values of the parameters), prob-
abilities of drawing each of the transformations and a starting point. In each iteration
one of the transformations is drawn, and then it is used to transform the orbit’s point
from the previous iteration (Picard iteration). Such approach allows to obtain geo-
metric patterns which shapes are completely different than the ones obtained with the
direct use of one Gumowski-Mira transformation, which for instance was used in [25].

The extension of the algorithm presented in [B5] from two to k Gumowski-Mira
transformations was proposed in [B1]. Except the extension to k transformations in [B1]
the junction with the help of segments of the consecutive points was proposed. More-
over, to enrich the pure geometry which occurs from the use of the Gumowski-Mira
transformation three colouring algorithms were proposed. In the first colouring algo-
rithm the colour was assigned according to the distance of the coloured point from
the centre of pattern’s bounding rectangle. In the second algorithm the colour was
assigned based on the number of iteration in which the coloured point arose. The last
algorithm joins features of the first two algorithms.

In [A12] to generate geometrically interesting orbits of discrete dynamical systems
the authors – except the Gumowski-Mira transformation – used four further functions.
All the functions were used in two algorithms. In the first algorithm it was proposed to
use a single dynamical system in a switching process between the Picard iteration and
the Krasnoselskij iteration (a special case of the Mann iteration, in which αn = const).
The switching is made in a random way – the probability of drawing each of the it-
erations is equal to 1/2. In the second algorithm a set of k dynamical systems and
a probability distribution of drawing the dynamical system were used. In the algo-
rithm’s iteration a dynamical system is drawn and then the point from the previous
iteration is transformed using the drawn dynamical system and the Krasnoselskij it-
eration. To colour the patterns the algorithms from [B1] were used. The presented
examples showed that the proposed algorithms have potential in generating aesthetic
patterns. Moreover, it was shown that the patterns are very sensitive on the parameter
in the Krasnoselskij iteration. The best results were obtained for the values of this
parameter in the [0.99, 1] interval.

In [A3] based on the observation that for different starting points in the generation
of an orbit we obtain different patterns it was proposed to change the orbits during
the iteration process. For this purpose the Picard iteration was modified using the
so-called perturbation function. After the modification the iteration process took the
following form:

xn+1 = ( f ◦ p)(xn), (18)

where f : R2 → R2 is the function that defines a dynamical system, and p : R2 → R2 is
the perturbation function. In the article several different perturbation functions were
proposed. Moreover, it was proposed to use a combination of the standard Picard
iteration and the iteration with the perturbation:

xn+1 = αx′n+1 + (1− α)x′′n+1, (19)

where x′n+1 = f (xn) (the Picard iteration) and x′′n+1 = f (p(xn)) (the iteration with the
perturbation). The presented examples showed that using the modified iteration pro-
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cesses we are able to obtain patterns different than the ones generated with the help of
the Picard iteration. Moreover, it was shown that the introduction of the perturbation
function gives many possibilities in the generation of new patterns.

4.3.5. Pattern generated with the help of the dynamics of discrete dynamical
systems

Using discrete dynamical systems the aesthetic patterns can be generated not only
by the use of their orbits. Other approach that can be used is the use of dynamics of a
dynamical system, which is presented as a phase portrait. In the literature we can find
many studies on the generation of symmetrical patterns using the dynamics of discrete
dynamical systems. In [3] Chung and Chan studied the following dynamical system:{

xn+1 = xn − f (xn, yn),
yn+1 = yn − g(xn, yn),

(20)

where (x0, y0) ∈ R2 is the staring point, and f , g : R2 → R are the functions that
define the system. In their work Chung and Chan presented conditions under which
the phase portrait of this dynamical system will have different types of symmetries:
translation, rotational, glide, wallpaper etc.

In [A2] the results from [3] were expanded. It was observed that the system (20)
uses the Picard iteration, i.e., pn+1 = T(pn), where T is given by the following formula:

T(p) =
(

xp − f (p)
yp − g(p)

)
, (21)

where p = (xp, yp). Similar to polynomiography or inversion fractals in [A2] it was
proposed to use other iterations from the fixed point theory. Moreover, it was pro-
posed to expand the range of the parameters outside the (0, 1], [0, 1] intervals and to
introduce vector parameters instead of the scalar ones that were used in the iterations.
Next, example conditions that the functions f and g must satisfy in order to obtain a
translation symmetry along the x axis of the phase portraits using the Mann and the
S-iteration were introduced. The next proposed modification of the iteration process
was the use of an affine combination of iterations with different functions f and g. In
order to enrich the patterns some convergence tests were also proposed. In [A2] the
possibility of implementing the proposed modifications using the shaders written in
GLSL was also discussed. The presented examples showed that with the help of the
proposed modifications we are able to generate symmetrical patterns which we have
not been able to generate using the method from [3]. Moreover, a comparison of the
generation times for two algorithm’s implementation was made. The first implemen-
tation was made in the Processing language (the CPU implementation) and the second
in the GLSL (the GPU implementation). From the comparison it results that using
the shaders we can obtain a speed-up from 1000 to 2500 times compared to the CPU
implementation.

5. Review of other scientific achievements

Other publications

[C1] GDAWIEC, K. Pseudofractal 2D shape recognition. In Rough Set and Knowledge Tech-
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nology, J. Yu, S. Greco, P. Lingras, G. Wang, and A. Skowron, Eds., vol. 6401 of Lec-
ture Notes in Artificial Intelligence. Springer, Berlin Heidelberg, 2010, pp. 403–410. DOI:
10.1007/978-3-642-16248-0 57
MNiSW: 13 pts.

[C2] GDAWIEC, K., AND DOMAŃSKA, D. Partitioned iterated function systems with di-
vision and a fractal dependence graph in recognition of 2D shapes. International
Journal of Applied Mathematics and Computer Science 21, 4 (2011), 757–767. DOI:
10.2478/v10006-011-0060-8
IF: 0.487, MNiSW: 20 pts.

[C3] GDAWIEC, K., AND DOMAŃSKA, D. Recognition of two-dimensional shapes based on
dependence vectors. In Artificial Intelligence and Soft Computing, L. Rutkowski, M. Kory-
tkowski, R. Scherer, R. Tadeusiewicz, L. A. Zadeh, and J. M. Zurada, Eds., vol. 7267 of
Lecture Notes in Artificial Intelligence. Springer, Berlin Heidelberg, 2012, pp. 501–508. DOI:
10.1007/978-3-642-29347-4 58
MNiSW: 10 pts.

[C4] KOTARSKI, W., GDAWIEC, K., AND LISOWSKA, A. Nieliniowe podziały i fraktale. In
Systemy wspomagania decyzji, A. Wakulicz-Deja, Ed. Instytut Informatyki Uniwersytetu
Śla̧skiego, Katowice, 2010, pp. 363–371.
MNiSW: 3 pts.

5.1. Impact of iterations on the complex polynomial roots finding methods

Besides the research on the aesthetic pattern generation methods in polynomiog-
raphy some other studies on the numerical properties of the proposed methods were
made.

In [A13] a visual analysis of the impact of the iteration parameters values on the
convergence of the root finding method was performed, and in [A11] a similar analysis
was made for the pseudo-methods. The analyses showed that using different iterations
instead of the Picard one we are able to improve algorithm’s convergence, but we are
not able to explicitly give the values that are good in every case. Depending on the
root finding method or the pseudo-method and the polynomial the best iteration and
the values of the parameters are different.

In [A1, A10, A13] an analysis of the impact of the parameters that are used in the
iteration processes on the generation time of the polynomiograph was made. In [A13]
the analysis was made for the parameters of different iterations for a single root find-
ing method, in [A10] for the parameters of the different switching processes, and in
[A1] for the parameters of an affine combination of the root finding methods and dif-
ferent iterations that use several root finding methods. The analyses showed that the
dependency of the generation time on the parameters is mostly non-trivial, strongly
non-linear and non-monotonic.

In [A1] except the studies on the generation times of different polynomiographs an
analysis of the impact of the parameters used in the affine combination of root finding
methods and in different iterations that use several root finding methods on different
numerical measures was made. The analysis was made for the following numerical
measures: the convergence area index, the average number of iterations, the fractal
dimension of the boundaries of basins of attraction and the Wada measure of the basins
of attraction. Similar to the case of the generation times, the dependency in the case of
every measure is non-trivial, strongly non-linear and non-monotonic.
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5.2. Fractal methods of 2D shapes recognition

In [C2] to introduce a new method of fractal recognition of 2D shapes the following
observation was used: when we divide the image into sub-images and use a fractal
compression on the independent sub-images the resulting fractal description which
consists of the set of partitioned iterated function systems (PIFS) is less sensitive on the
changes of the shape. The set of the PIFSs obtained in this way is called PIFS with divi-
sion. In the article it was proved that the space of PIFSs with division with appropriate
metric is a metric space and that the input image is an attractor of a PIFS with division.
Using PIFS with division and a dependence graph computed from this PIFS with divi-
sion a method of fractal dependence graph was proposed. The tests of the effectiveness
of the method were conducted on two bases with 2D shapes images. The first base was
created by the authors and consists from three test sets: (1) shapes changed by elemen-
tary transformations, i.e., rotation, translation and scaling, (2) shapes altered by locally
small changes together with the transformation with the elementary transformations,
(3) shapes altered by locally large changes together with the transformation with the
elementary transformations. The second base was the standard MPEG7 CE-Shape-1
Part B base. The tests showed that the fractal dependence graph method obtains higher
accuracy than the other fractal methods known in the literature.

In [C1] another drawback of the fractal image compression used as the base for
the fractal features representing a shape was observed. It was observed that when we
create the dictionary for the fractal compression even the change of a single element
(a shape change in this area) of this dictionary can significantly influence the resulting
PIFS. In the pessimistic case the whole system can change. To eliminate this drawback
it was proposed to use – in the fractal image compression – a pseudofractal approach.
This approach is based on a dictionary that is not created from the original image that
is compressed, but from a fixed image that is selected specially for this aim. In this way
the change of object’s shape does not have impact on the resulting PIFS. The proposed
pseudofractal approach was used in the fractal dependence graph method. The tests
showing the effectiveness of the proposed approach were made on the same bases
as in [C2]. The tests showed that the use of the pseudofractal approach reduces the
recognition error in comparison to the methods that are based on PIFS and PIFS with
division.

The pseudofractal approach was also used in [C3], where another method of fractal
recognition of 2D shapes was introduced. In this method as the fractal features the set
of dependence vectors was used. Dependence vectors for a range block R are created
by vectors between R and the range blocks that intersect the domain block D that
corresponds to R. To compute the similarity between objects the Haussdorf metric on
the sets of dependence vectors was used. In the tests aside from the bases used in
[C1, C2] the Kimia-99 and Kimia-216 bases were used. The tests showed that the use of
the pseudofractal approach and the dependence vectors gives the smallest recognition
error among the 2D object fractal recognition methods.

5.3. Non-linear subdivision and fractals

In [C4] generalizations of the subdivision technique were presented. Application
of these generalizations gives possibilities of generating of smooth graphical objects
such as curves, patches or fractal objects that are given by a set of starting points. The
generalizations go in two directions. The first one introduces a complex parameter
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into a linear subdivision and the second non-linearity with the use of averages other
than the arithmetic average. The discussed subdivision generalizations expanded in
a significant way the class of graphical objects which can be generated with the help
of linear subdivision. Subdivision remain in a close connection with fractal methods,
because with their help and the given set of control points one can define IFSs used
in the fractal rendering of graphical objects. In the article the connection between sub-
division and fractals was also shown. Moreover, some applications of the subdivision
method were presented.
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